Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Cell Calcium ; 101: 102524, 2022 01.
Article in English | MEDLINE | ID: covidwho-1914206

ABSTRACT

A recent publication proposes that T cell receptor activation elicits formation of the Ca2+ releasing messenger NAADP from NAADPH, catalysed by the NADPH oxidase DUOX. This is in contrast to the hitherto prevailing view that CD38 is critical for NAADP formation. Is it time to reassess the role of CD38?


Subject(s)
Calcium , Membrane Glycoproteins , ADP-ribosyl Cyclase 1/metabolism , Calcium/metabolism , Calcium Signaling , Membrane Glycoproteins/metabolism , NADP/metabolism , Receptors, Antigen, T-Cell
2.
Curr Cancer Drug Targets ; 22(5): 351-360, 2022.
Article in English | MEDLINE | ID: covidwho-1910830

ABSTRACT

BACKGROUND: The hypothesis that hypertension is clinically associated with an enhanced risk of developing cancer has been highlighted. However, the working principles involved in this link are still under intensive discussion. A correlation among inflammation, hypertension, and cancer could accurately describe the clinical link between these diseases. In addition, dyshomeostasis of Ca2+ has been considered to be involved in both cancer and hypertension, and inflammation. There is a strong link between Ca2+ signalling, e.g. enhanced Ca2+ signals, and inflammatory outcomes. cAMP also modulates pro- and anti-inflammatory outcomes; pharmaceuticals, which increase intracellular cAMP levels, can decrease the production of proinflammatory mediators and enhance the production of antiinflammatory outcomes. OBJECTIVE: This article highlights the participation of Ca2+/cAMP signalling in the clinical association among inflammation, hypertension, and an enhanced risk for the development of cancer. In addition, considering that research on coronavirus disease 2019 (COVID-19) is a rapidly evolving field, this article also reviews recent reports related to the role of Ca2+ channel blockers in restoring Ca2+ signalling disruption due to COVID-19, including the relationship among COVID-19, cancer, and hypertension. CONCLUSION: An understanding of the association among these diseases could expand current pharmacotherapy, involving Ca2+ channel blockers and pharmaceuticals that facilitate a rise in cAMP levels.


Subject(s)
COVID-19 , Hypertension , Neoplasms , COVID-19/complications , Calcium/metabolism , Calcium Signaling , Cyclic AMP/metabolism , Cyclic AMP/therapeutic use , Humans , Hypertension/complications , Hypertension/drug therapy , Inflammation , Pharmaceutical Preparations
3.
Cells ; 11(11)2022 06 05.
Article in English | MEDLINE | ID: covidwho-1892776

ABSTRACT

All human life starts with a calcium (Ca2+) wave. This ion regulates a plethora of cellular functions ranging from fertilisation and birth to development and cell death. A sophisticated system is responsible for maintaining the essential, tight concentration of calcium within cells. Intricate components of this Ca2+ network are store-operated calcium channels in the cells' membrane. The best-characterised store-operated channel is the Ca2+ release-activated Ca2+ (CRAC) channel. Currents through CRAC channels are critically dependent on the correct function of two proteins: STIM1 and Orai1. A disruption of the precise mechanism of Ca2+ entry through CRAC channels can lead to defects and in turn to severe impacts on our health. Mutations in either STIM1 or Orai1 proteins can have consequences on our immune cells, the cardiac and nervous system, the hormonal balance, muscle function, and many more. There is solid evidence that altered Ca2+ signalling through CRAC channels is involved in the hallmarks of cancer development: uncontrolled cell growth, resistance to cell death, migration, invasion, and metastasis. In this work we highlight the importance of Ca2+ and its role in human health and disease with focus on CRAC channels.


Subject(s)
Calcium Release Activated Calcium Channels , Calcium , Calcium/metabolism , Calcium Release Activated Calcium Channels/metabolism , Calcium Signaling/physiology , Humans , Literacy , ORAI1 Protein/metabolism
5.
Alzheimers Dement ; 18(5): 955-965, 2022 05.
Article in English | MEDLINE | ID: covidwho-1669366

ABSTRACT

INTRODUCTION: The mechanisms that lead to cognitive impairment associated with COVID-19 are not well understood. METHODS: Brain lysates from control and COVID-19 patients were analyzed for oxidative stress and inflammatory signaling pathway markers, and measurements of Alzheimer's disease (AD)-linked signaling biochemistry. Post-translational modifications of the ryanodine receptor/calcium (Ca2+ ) release channels (RyR) on the endoplasmic reticuli (ER), known to be linked to AD, were also measured by co-immunoprecipitation/immunoblotting of the brain lysates. RESULTS: We provide evidence linking SARS-CoV-2 infection to activation of TGF-ß signaling and oxidative overload. The neuropathological pathways causing tau hyperphosphorylation typically associated with AD were also shown to be activated in COVID-19 patients. RyR2 in COVID-19 brains demonstrated a "leaky" phenotype, which can promote cognitive and behavioral defects. DISCUSSION: COVID-19 neuropathology includes AD-like features and leaky RyR2 channels could be a therapeutic target for amelioration of some cognitive defects associated with SARS-CoV-2 infection and long COVID.


Subject(s)
Alzheimer Disease , COVID-19 , Alzheimer Disease/genetics , Brain/pathology , COVID-19/complications , Calcium Signaling/physiology , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
6.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1625531

ABSTRACT

The health scourge imposed on humanity by the COVID-19 pandemic seems not to recede. This fact warrants refined and novel ideas analyzing different aspects of the illness. One such aspect is related to the observation that most COVID-19 casualties were older males, a tendency also noticed in the epidemics of SARS-CoV in 2003 and the Middle East respiratory syndrome in 2012. This gender-related difference in the COVID-19 death toll might be directly involved with testosterone (TEST) and its plasmatic concentration in men. TEST has been demonstrated to provide men with anti-inflammatory and immunological advantages. As the plasmatic concentration of this androgen decreases with age, the health benefit it confers also diminishes. Low plasmatic levels of TEST can be determinant in the infection's outcome and might be related to a dysfunctional cell Ca2+ homeostasis. Not only does TEST modulate the activity of diverse proteins that regulate cellular calcium concentrations, but these proteins have also been proven to be necessary for the replication of many viruses. Therefore, we discuss herein how TEST regulates different Ca2+-handling proteins in healthy tissues and propose how low TEST concentrations might facilitate the replication of the SARS-CoV-2 virus through the lack of modulation of the mechanisms that regulate intracellular Ca2+ concentrations.


Subject(s)
COVID-19/metabolism , COVID-19/mortality , Testosterone/metabolism , Age Factors , Aged , Aging/metabolism , Animals , COVID-19/etiology , Calcium Signaling , Humans , Inflammation/metabolism , Male , Morbidity
7.
Biomolecules ; 12(1)2022 01 05.
Article in English | MEDLINE | ID: covidwho-1613606

ABSTRACT

The angiotensin-converting enzyme 2 (ACE2) is a type I integral membrane that exists in two forms: the first is a transmembrane protein; the second is a soluble catalytic ectodomain of ACE2. The catalytic ectodomain of ACE2 undergoes shedding by a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), in which calmodulin mediates the calcium signaling pathway that is involved in ACE2 release, resulting in a soluble catalytic ectodomain of ACE2 that can be measured as soluble ACE2 plasma activity. The shedding of the ACE2 catalytic ectodomain plays a role in cardiac remodeling and endothelial dysfunction and is a predictor of all-cause mortality, including cardiovascular mortality. Moreover, considerable evidence supports that the ACE2 catalytic ectodomain is an essential entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Additionally, endotoxins and the pro-inflammatory cytokines interleukin (IL)-1ß and tumor necrosis factor-alpha (TNFα) all enhanced soluble catalytic ectodomain ACE2 shedding from the airway epithelia, suggesting that the shedding of ACE2 may represent a mechanism by which viral entry and infection may be controlled such as some types of betacoronavirus. In this regard, ACE2 plays an important role in inflammation and thrombotic response, and its down-regulation may aggravate COVID-19 via the renin-angiotensin system, including by promoting pathological changes in lung injury. Soluble forms of ACE2 have recently been shown to inhibit SARS-CoV-2 infection. Furthermore, given that vitamin D enhanced the shedding of ACE2, some studies reported that vitamin D treatment is associated with prognosis improvement in COVID-19. This is an updated review on the evidence, clinical, and therapeutic applications of ACE2 for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Calcium Signaling , Renin-Angiotensin System , SARS-CoV-2/metabolism , Catalytic Domain , Humans
8.
J Immunol ; 208(1): 74-84, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1534334

ABSTRACT

ORAI1 and stromal interaction molecule 1 (STIM1) are the critical mediators of store-operated Ca2+ entry by acting as the pore subunit and an endoplasmic reticulum-resident signaling molecule, respectively. In addition to Ca2+ signaling, STIM1 is also involved in regulation of the type I IFN (IFN-I) response. To examine their potential role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we generated ORAI1 and STIM1 knockout human HEK293-angiotensin-converting enzyme 2 cells and checked their responses. STIM1 knockout cells showed strong resistance to SARS-CoV-2 infection as a result of enhanced IFN-I response. On the contrary, ORAI1 deletion induced high susceptibility to SARS-CoV-2 infection. Mechanistically, ORAI1 knockout cells showed reduced homeostatic cytoplasmic Ca2+ concentration and severe impairment in tonic IFN-I signaling. Transcriptome analysis showed downregulation of multiple antiviral signaling pathways in ORAI1 knockout cells, likely because of reduced expression of the Ca2+-dependent transcription factors of the AP-1 family and MEF2C Accordingly, modulation of homeostatic Ca2+ concentration by pretreatment with ORAI1 blocker or agonist could influence baseline IFNB expression and resistance to SARS-CoV-2 infection in a human lung epithelial cell line. Our results identify a novel role of ORAI1-mediated Ca2+ signaling in regulating the tonic IFN-I levels, which determine host resistance to SARS-CoV-2 infection.


Subject(s)
COVID-19/metabolism , Interferon Type I/metabolism , Lung/immunology , Neoplasm Proteins/metabolism , ORAI1 Protein/metabolism , Respiratory Mucosa/metabolism , SARS-CoV-2/physiology , Stromal Interaction Molecule 1/metabolism , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , Calcium Signaling , Clustered Regularly Interspaced Short Palindromic Repeats , Disease Resistance , Disease Susceptibility , Gene Expression Profiling , HEK293 Cells , Humans , Lung/virology , MEF2 Transcription Factors/genetics , Neoplasm Proteins/genetics , ORAI1 Protein/genetics , Stromal Interaction Molecule 1/genetics , Transcription Factor AP-1/genetics
9.
Neurobiol Dis ; 161: 105561, 2021 12.
Article in English | MEDLINE | ID: covidwho-1510138

ABSTRACT

Coronavirus disease 19 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 pathogenesis causes vascular-mediated neurological disorders via elusive mechanisms. SARS-CoV-2 infects host cells via the binding of viral Spike (S) protein to transmembrane receptor, angiotensin-converting enzyme 2 (ACE2). Although brain pericytes were recently shown to abundantly express ACE2 at the neurovascular interface, their response to SARS-CoV-2 S protein is still to be elucidated. Using cell-based assays, we found that ACE2 expression in human brain vascular pericytes was increased upon S protein exposure. Pericytes exposed to S protein underwent profound phenotypic changes associated with an elongated and contracted morphology accompanied with an enhanced expression of contractile and myofibrogenic proteins, such as α-smooth muscle actin (α-SMA), fibronectin, collagen I, and neurogenic locus notch homolog protein-3 (NOTCH3). On the functional level, S protein exposure promoted the acquisition of calcium (Ca2+) signature of contractile ensheathing pericytes characterized by highly regular oscillatory Ca2+ fluctuations. Furthermore, S protein induced lipid peroxidation, oxidative and nitrosative stress in pericytes as well as triggered an immune reaction translated by activation of nuclear factor-kappa-B (NF-κB) signaling pathway, which was potentiated by hypoxia, a condition associated with vascular comorbidities that exacerbate COVID-19 pathogenesis. S protein exposure combined to hypoxia enhanced the production of pro-inflammatory cytokines involved in immune cell activation and trafficking, namely macrophage migration inhibitory factor (MIF). Using transgenic mice expressing the human ACE2 that recognizes S protein, we observed that the intranasal infection with SARS-CoV-2 rapidly induced hypoxic/ischemic-like pericyte reactivity in the brain of transgenic mice, accompanied with an increased vascular expression of ACE2. Moreover, we found that SARS-CoV-2 S protein accumulated in the intranasal cavity reached the brain of mice in which the nasal mucosa is deregulated. Collectively, these findings suggest that SARS-CoV-2 S protein impairs the vascular and immune regulatory functions of brain pericytes, which may account for vascular-mediated brain damage. Our study provides a better understanding for the mechanisms underlying cerebrovascular disorders in COVID-19, paving the way to develop new therapeutic interventions.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Brain/metabolism , COVID-19/metabolism , Hypoxia-Ischemia, Brain/metabolism , Hypoxia/metabolism , Inflammation/metabolism , Pericytes/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Actins/metabolism , Angiotensin-Converting Enzyme 2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , Brain/blood supply , COVID-19/physiopathology , Calcium Signaling , Collagen Type I/metabolism , Fibronectins/metabolism , Humans , Hypoxia-Ischemia, Brain/physiopathology , Lipid Peroxidation/drug effects , Lipid Peroxidation/genetics , Macrophage Migration-Inhibitory Factors/drug effects , Macrophage Migration-Inhibitory Factors/metabolism , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Myofibroblasts , NF-kappa B/drug effects , NF-kappa B/metabolism , Nasal Mucosa , Nitrosative Stress , Oxidative Stress , Pericytes/cytology , Pericytes/drug effects , Phenotype , Receptor, Notch3/metabolism , Receptors, Coronavirus/drug effects , Receptors, Coronavirus/genetics , Receptors, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/pharmacology
10.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1463706

ABSTRACT

In hearts, calcium (Ca2+) signaling is a crucial regulatory mechanism of muscle contraction and electrical signals that determine heart rhythm and control cell growth. Ca2+ signals must be tightly controlled for a healthy heart, and the impairment of Ca2+ handling proteins is a key hallmark of heart disease. The discovery of microRNA (miRNAs) as a new class of gene regulators has greatly expanded our understanding of the controlling module of cardiac Ca2+ cycling. Furthermore, many studies have explored the involvement of miRNAs in heart diseases. In this review, we aim to summarize cardiac Ca2+ signaling and Ca2+-related miRNAs in pathological conditions, including cardiac hypertrophy, heart failure, myocardial infarction, and atrial fibrillation. We also discuss the therapeutic potential of Ca2+-related miRNAs as a new target for the treatment of heart diseases.


Subject(s)
Atrial Fibrillation/genetics , Calcium Signaling/genetics , Calcium/metabolism , Heart Failure/genetics , MicroRNAs/genetics , Myocardial Infarction/genetics , Animals , Atrial Fibrillation/metabolism , Atrial Fibrillation/therapy , Gene Expression Regulation , Heart Failure/metabolism , Heart Failure/therapy , Humans , Myocardial Contraction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/therapy
12.
Curr Neurovasc Res ; 18(1): 162-168, 2021.
Article in English | MEDLINE | ID: covidwho-1374189

ABSTRACT

BACKGROUND: Robust evidence has described that Parkinson´s disease (PD) is associated with an increased risk for developing epileptic seizures. In fact, an interplay between PD and epilepsy has been of interest for many years. An emerging hypothesis is that inflammation could link both diseases. OBJECTIVE: Bearing in mind the experience of our group in the field of Ca2+/cAMP signalling pathways, this article discussed, beyond inflammation, the role of these signalling pathways in this link between PD and epilepsy. METHODS: Publications involving Ca2+/cAMP signalling pathways, PD, and epilepsy (alone or combined) were collected by searching PubMed and EMBASE. RESULTS: The comprehension of the interplay between PD and epilepsy could improve the drug therapy. In addition, a Ca2+ signalling dyshomeostasis due to Coronavirus disease 2019 (COVID-19), an emerging and rapidly evolving situation, has been reported. CONCLUSION: Thus, this article also debated recent findings about therapeutics involving Ca2+ channel blockers for preventing Ca2+ signalling dyshomeostasis due to COVID-19, including the correlation among COVID-19, epilepsy, and PD.


Subject(s)
Calcium Signaling , Cyclic AMP , Epilepsy/complications , Inflammation/complications , Parkinson Disease/complications , Signal Transduction , COVID-19/complications , Calcium Channel Blockers/therapeutic use , Epilepsy/physiopathology , Humans , Inflammation/physiopathology , Parkinson Disease/physiopathology
13.
PLoS One ; 16(8): e0255976, 2021.
Article in English | MEDLINE | ID: covidwho-1365424

ABSTRACT

BACKGROUND: Cardiac injury associated with cytokine release frequently occurs in SARS-CoV-2 mediated coronavirus disease (COVID19) and mortality is particularly high in these patients. The mechanistic role of the COVID19 associated cytokine-storm for the concomitant cardiac dysfunction and associated arrhythmias is unclear. Moreover, the role of anti-inflammatory therapy to mitigate cardiac dysfunction remains elusive. AIMS AND METHODS: We investigated the effects of COVID19-associated inflammatory response on cardiac cellular function as well as its cardiac arrhythmogenic potential in rat and induced pluripotent stem cell derived cardiomyocytes (iPS-CM). In addition, we evaluated the therapeutic potential of the IL-1ß antagonist Canakinumab using state of the art in-vitro confocal and ratiometric high-throughput microscopy. RESULTS: Isolated rat ventricular cardiomyocytes were exposed to control or COVID19 serum from intensive care unit (ICU) patients with severe ARDS and impaired cardiac function (LVEF 41±5%; 1/3 of patients on veno-venous extracorporeal membrane oxygenation; CK 154±43 U/l). Rat cardiomyocytes showed an early increase of myofilament sensitivity, a decrease of Ca2+ transient amplitudes and altered baseline [Ca2+] upon exposure to patient serum. In addition, we used iPS-CM to explore the long-term effect of patient serum on cardiac electrical and mechanical function. In iPS-CM, spontaneous Ca2+ release events were more likely to occur upon incubation with COVID19 serum and nuclear as well as cytosolic Ca2+ release were altered. Co-incubation with Canakinumab had no effect on pro-arrhythmogenic Ca2+ release or Ca2+ signaling during excitation-contraction coupling, nor significantly influenced cellular automaticity. CONCLUSION: Serum derived from COVID19 patients exerts acute cardio-depressant and chronic pro-arrhythmogenic effects in rat and iPS-derived cardiomyocytes. Canakinumab had no beneficial effect on cellular Ca2+ signaling during excitation-contraction coupling. The presented method utilizing iPS-CM and in-vitro Ca2+ imaging might serve as a novel tool for precision medicine. It allows to investigate cytokine related cardiac dysfunction and pharmacological approaches useful therein.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Arrhythmias, Cardiac , COVID-19 Drug Treatment , COVID-19 , Calcium Signaling/drug effects , Myocytes, Cardiac , SARS-CoV-2/metabolism , Adult , Aged , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , COVID-19/complications , COVID-19/metabolism , COVID-19/pathology , Calcium/metabolism , Drug Evaluation, Preclinical , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Male , Middle Aged , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats , Rats, Sprague-Dawley , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology
14.
Mol Aspects Med ; 81: 101004, 2021 10.
Article in English | MEDLINE | ID: covidwho-1322255

ABSTRACT

Viral infections are one of the leading causes of human illness. Viruses take over host cell signaling cascades for their replication and infection. Calcium (Ca2+) is a versatile and ubiquitous second messenger that modulates plethora of cellular functions. In last two decades, a critical role of host cell Ca2+ signaling in modulating viral infections has emerged. Furthermore, recent literature clearly implicates a vital role for the organellar Ca2+ dynamics (influx and efflux across organelles) in regulating virus entry, replication and severity of the infection. Therefore, it is not surprising that a number of viral infections including current SARS-CoV-2 driven COVID-19 pandemic are associated with dysregulated Ca2+ homeostasis. The focus of this review is to first discuss the role of host cell Ca2+ signaling in viral entry, replication and egress. We further deliberate on emerging literature demonstrating hijacking of the host cell Ca2+ dynamics by viruses. In particular, a variety of viruses including SARS-CoV-2 modulate lysosomal and cytosolic Ca2+ signaling for host cell entry and replication. Moreover, we delve into the recent studies, which have demonstrated the potential of several FDA-approved drugs targeting Ca2+ handling machinery in inhibiting viral infections. Importantly, we discuss the prospective of targeting intracellular Ca2+ signaling for better management and treatment of viral pathogenesis including COVID-19. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention.


Subject(s)
COVID-19 , Virus Diseases , Calcium/metabolism , Calcium Signaling , Humans , Pandemics , Prospective Studies , SARS-CoV-2
15.
Int Rev Cell Mol Biol ; 363: 203-269, 2021.
Article in English | MEDLINE | ID: covidwho-1212320

ABSTRACT

An increase in intracellular Ca2+ concentration ([Ca2+]i) regulates a plethora of functions in the cardiovascular (CV) system, including contraction in cardiomyocytes and vascular smooth muscle cells (VSMCs), and angiogenesis in vascular endothelial cells and endothelial colony forming cells. The sarco/endoplasmic reticulum (SR/ER) represents the largest endogenous Ca2+ store, which releases Ca2+ through ryanodine receptors (RyRs) and/or inositol-1,4,5-trisphosphate receptors (InsP3Rs) upon extracellular stimulation. The acidic vesicles of the endolysosomal (EL) compartment represent an additional endogenous Ca2+ store, which is targeted by several second messengers, including nicotinic acid adenine dinucleotide phosphate (NAADP) and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], and may release intraluminal Ca2+ through multiple Ca2+ permeable channels, including two-pore channels 1 and 2 (TPC1-2) and Transient Receptor Potential Mucolipin 1 (TRPML1). Herein, we discuss the emerging, pathophysiological role of EL Ca2+ signaling in the CV system. We describe the role of cardiac TPCs in ß-adrenoceptor stimulation, arrhythmia, hypertrophy, and ischemia-reperfusion injury. We then illustrate the role of EL Ca2+ signaling in VSMCs, where TPCs promote vasoconstriction and contribute to pulmonary artery hypertension and atherosclerosis, whereas TRPML1 sustains vasodilation and is also involved in atherosclerosis. Subsequently, we describe the mechanisms whereby endothelial TPCs promote vasodilation, contribute to neurovascular coupling in the brain and stimulate angiogenesis and vasculogenesis. Finally, we discuss about the possibility to target TPCs, which are likely to mediate CV cell infection by the Severe Acute Respiratory Disease-Coronavirus-2, with Food and Drug Administration-approved drugs to alleviate the detrimental effects of Coronavirus Disease-19 on the CV system.


Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Calcium Signaling/physiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Cardiovascular System/metabolism , Lysosomes/metabolism , SARS-CoV-2 , ADP-ribosyl Cyclase 1/metabolism , Animals , Brain/blood supply , Brain/metabolism , COVID-19/metabolism , Calcium Channels/metabolism , Cardiovascular Diseases/drug therapy , Endoplasmic Reticulum/metabolism , Endothelial Cells/metabolism , Humans , Models, Cardiovascular , Myocytes, Cardiac/metabolism , NADP/analogs & derivatives , NADP/metabolism , Receptors, Adrenergic, beta/metabolism , Sarcoplasmic Reticulum/metabolism , Transient Receptor Potential Channels/metabolism
16.
Sci Signal ; 14(675)2021 03 23.
Article in English | MEDLINE | ID: covidwho-1186203

ABSTRACT

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from acidic organelles through the activation of two-pore channels (TPCs) to regulate endolysosomal trafficking events. NAADP action is mediated by NAADP-binding protein(s) of unknown identity that confer NAADP sensitivity to TPCs. Here, we used a "clickable" NAADP-based photoprobe to isolate human NAADP-binding proteins and identified Jupiter microtubule-associated homolog 2 (JPT2) as a TPC accessory protein required for endogenous NAADP-evoked Ca2+ signaling. JPT2 was also required for the translocation of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus through the endolysosomal system. Thus, JPT2 is a component of the NAADP receptor complex that is essential for TPC-dependent Ca2+ signaling and control of coronaviral entry.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Calcium Signaling/physiology , Microtubule-Associated Proteins/metabolism , NADP/analogs & derivatives , SARS-CoV-2/physiology , Affinity Labels , Animals , Calcium Channels/metabolism , Carrier Proteins/metabolism , Click Chemistry/methods , Gene Knockdown Techniques , HEK293 Cells , Humans , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , NADP/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Second Messenger Systems/physiology , Transcriptome , Virus Internalization
17.
Nature ; 594(7861): 88-93, 2021 06.
Article in English | MEDLINE | ID: covidwho-1171428

ABSTRACT

COVID-19 is a disease with unique characteristics that include lung thrombosis1, frequent diarrhoea2, abnormal activation of the inflammatory response3 and rapid deterioration of lung function consistent with alveolar oedema4. The pathological substrate for these findings remains unknown. Here we show that the lungs of patients with COVID-19 contain infected pneumocytes with abnormal morphology and frequent multinucleation. The generation of these syncytia results from activation of the SARS-CoV-2 spike protein at the cell plasma membrane level. On the basis of these observations, we performed two high-content microscopy-based screenings with more than 3,000 approved drugs to search for inhibitors of spike-driven syncytia. We converged on the identification of 83 drugs that inhibited spike-mediated cell fusion, several of which belonged to defined pharmacological classes. We focused our attention on effective drugs that also protected against virus replication and associated cytopathicity. One of the most effective molecules was the antihelminthic drug niclosamide, which markedly blunted calcium oscillations and membrane conductance in spike-expressing cells by suppressing the activity of TMEM16F (also known as anoctamin 6), a calcium-activated ion channel and scramblase that is responsible for exposure of phosphatidylserine on the cell surface. These findings suggest a potential mechanism for COVID-19 disease pathogenesis and support the repurposing of niclosamide for therapy.


Subject(s)
Anoctamins/antagonists & inhibitors , COVID-19/pathology , Cell Fusion , Drug Evaluation, Preclinical , Giant Cells/drug effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Aged , Aged, 80 and over , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , Anoctamins/metabolism , COVID-19/metabolism , COVID-19/virology , Calcium Signaling/drug effects , Cell Line , Chloride Channels/metabolism , Chlorocebus aethiops , Female , Giant Cells/metabolism , Giant Cells/virology , Humans , Lung/drug effects , Lung/pathology , Lung/virology , Male , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication/drug effects
18.
Cell Biol Int ; 45(7): 1533-1545, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1141294

ABSTRACT

Polymorphonuclear neutrophilic granulocytes (PMNs) are the largest proportion of leukocytes in adult human blood that perform numerous functions, including phagocytosis, degranulation, generation of reactive oxygen species, and NETosis. Excessive neutrophil activity associates with hyperinflammation and tissue damage during pathologies such as inflammatory bowel disease, diabetes mellitus, tuberculosis, and coronavirus disease 2019. Nicotinic acetylcholine receptors (nAChRs) can modulate immune cells, including neutrophils, functions, therefore, nAChR ligands are considered as the potent agents for therapy of inflammation. Earlier it was shown, that about 30% of PMNs from the acute inflammatory site responded to nicotine by calcium spikes. In this study, we studied the generation of calcium spikes in murine granulocytes with different maturity level (evaluated by Gr-1 expression) isolated from bone marrow in response to ligands of nAChRs in control and under chronic nicotine consumption. It was found that nearly 20%-25% cells in the granulocyte population responded to nicotine or selective antagonists of different type of nAChRs (α-cobratoxin, GIC, and Vc1.1). We demonstrated that in the control group Ca2+ -mobilizing activity was regulated through α7 and α9α10 nAChRs in immature granulocytes (Gr-1int ), whereas in mature granulocytes (Gr-1hi ) it was regulated through α7, α3ß2, and α9-contained nAChRs. Sensitivity of PMNs to nicotine depended on their maturity level after chronic nicotine consumption. Gr-1int cells responded to nicotine through α7 and α9-contained nAChRs, while Gr-1hi did not respond to nicotine. Thus, calcium response to nAChR ligands in bone marrow PMNs depends on their maturity level.


Subject(s)
Antigens, Ly/metabolism , Bone Marrow Cells/drug effects , Calcium Signaling/drug effects , Calcium/metabolism , Cholinergic Agents/pharmacology , Granulocytes/drug effects , Receptors, Nicotinic/drug effects , Animals , Bone Marrow Cells/metabolism , Cells, Cultured , Granulocytes/metabolism , Ligands , Male , Mice, Inbred BALB C , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/metabolism
19.
J Clin Immunol ; 40(2): 267-276, 2020 02.
Article in English | MEDLINE | ID: covidwho-829366

ABSTRACT

We report three new cases of a germline heterozygous gain-of-function missense (p.(Met1141Lys)) mutation in the C2 domain of phospholipase C gamma 2 (PLCG2) associated with symptoms consistent with previously described auto-inflammation and phospholipase Cγ2 (PLCγ2)-associated antibody deficiency and immune dysregulation (APLAID) syndrome and pediatric common variable immunodeficiency (CVID). Functional evaluation showed platelet hyper-reactivity, increased B cell receptor-triggered calcium influx and ERK phosphorylation. Expression of the altered p.(Met1141Lys) variant in a PLCγ2-knockout DT40 cell line showed clearly enhanced BCR-triggered influx of external calcium when compared to control-transfected cells. Our results further expand the molecular basis of pediatric CVID and phenotypic spectrum of PLCγ2-related defects.


Subject(s)
B-Lymphocytes/immunology , Common Variable Immunodeficiency/diagnosis , Germ-Line Mutation/genetics , Immunologic Deficiency Syndromes/diagnosis , Mutation, Missense/genetics , Phospholipase C gamma/genetics , Autoimmunity/genetics , Calcium Signaling , Cell Line , Child , Child, Preschool , Female , Humans , Infant , Male , Phenotype , Protein Domains/genetics
20.
Virology ; 539: 38-48, 2020 01 02.
Article in English | MEDLINE | ID: covidwho-822398

ABSTRACT

Ionic calcium (Ca2+) is a versatile intracellular second messenger that plays important roles in cellular physiological and pathological processes. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that causes serious vomiting and diarrhea in suckling piglets. In this study, the role of Ca2+ to PDCoV infection was investigated. PDCoV infection was found to upregulate intracellular Ca2+ concentrations of IPI-2I cells. Chelating extracellular Ca2+ by EGTA inhibited PDCoV replication, and this inhibitory effect was overcome by replenishment with CaCl2. Treatment with Ca2+ channel blockers, particularly the L-type Ca2+ channel blocker diltiazem hydrochloride, inhibited PDCoV infection significantly. Mechanistically, diltiazem hydrochloride reduces PDCoV infection by inhibiting the replication step of the viral replication cycle. Additionally, knockdown of CACNA1S, the L-type Ca2+ voltage-gated channel subunit, inhibited PDCoV replication. The combined results demonstrate that PDCoV modulates calcium influx to favor its replication.


Subject(s)
Calcium/metabolism , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Coronavirus/physiology , Swine Diseases/metabolism , Swine Diseases/virology , Virus Replication , Animals , Calcium Signaling , Swine , Swine, Miniature
SELECTION OF CITATIONS
SEARCH DETAIL